小知识,点击右侧“参考代码”按钮可以直达哦~

PTA 数据结构 第二章 线性表 参考代码

6-1 递增的整数序列链表的插入

本题要求实现一个函数,在递增的整数序列链表(带头结点)中插入一个新整数,并保持该序列的有序性。

函数接口定义:

List Insert( List L, ElementType X );

其中List结构定义如下:

typedef struct Node *PtrToNode;
struct Node {
    ElementType Data; /* 存储结点数据 */
    PtrToNode   Next; /* 指向下一个结点的指针 */
};
typedef PtrToNode List; /* 定义单链表类型 */

L是给定的带头结点的单链表,其结点存储的数据是递增有序的;函数Insert要将X插入L,并保持该序列的有序性,返回插入后的链表头指针。

裁判测试程序样例:

#include <stdio.h>
#include <stdlib.h>

typedef int ElementType;
typedef struct Node *PtrToNode;
struct Node {
    ElementType Data;
    PtrToNode   Next;
};
typedef PtrToNode List;

List Read(); /* 细节在此不表 */
void Print( List L ); /* 细节在此不表 */

List Insert( List L, ElementType X );

int main()
{
    List L;
    ElementType X;
    L = Read();
    scanf("%d", &X);
    L = Insert(L, X);
    Print(L);
    return 0;
}

/* 你的代码将被嵌在这里 */

输入样例:

5
1 2 4 5 6
3

输出样例:

1 2 3 4 5 6 

6.1参考代码

List Insert(List L, ElementType X) {
    PtrToNode newNode, tempNode, prevNode;

    // 创建新节点
    newNode = (PtrToNode)malloc(sizeof(struct Node));
    newNode->Data = X;
    newNode->Next = NULL;

    // 如果链表为空,直接返回新节点
    if (L->Next == NULL) {
        L->Next = newNode;
        return L;
    }

    tempNode = L->Next;
    prevNode = L;

    // 寻找插入位置
    while (tempNode != NULL && tempNode->Data < X) {
        prevNode = tempNode;
        tempNode = tempNode->Next;
    }

    // 插入新节点
    newNode->Next = tempNode;
    prevNode->Next = newNode;

    return L;
}




6-2 线性表元素的区间删除

给定一个顺序存储的线性表,请设计一个函数删除所有值大于min而且小于max的元素。删除后表中剩余元素保持顺序存储,并且相对位置不能改变。

函数接口定义:

List Delete( List L, ElementType minD, ElementType maxD );

其中List结构定义如下:

typedef int Position;
typedef struct LNode *List;
struct LNode {
    ElementType Data[MAXSIZE];
    Position Last; /* 保存线性表中最后一个元素在数组中的位置 */
};

L是用户传入的一个线性表,其中ElementType元素可以通过>、==、<进行比较;minD和maxD分别为待删除元素的值域的下、上界。函数Delete应将Data[]中所有值大于minD而且小于maxD的元素删除,同时保证表中剩余元素保持顺序存储,并且相对位置不变,最后返回删除后的表。
裁判测试程序样例:

#include <stdio.h>

#define MAXSIZE 20
typedef int ElementType;

typedef int Position;
typedef struct LNode *List;
struct LNode {
    ElementType Data[MAXSIZE];
    Position Last; /* 保存线性表中最后一个元素的位置 */
};

List ReadInput(); /* 裁判实现,细节不表。元素从下标0开始存储 */
void PrintList( List L ); /* 裁判实现,细节不表 */
List Delete( List L, ElementType minD, ElementType maxD );

int main()
{
    List L;
    ElementType minD, maxD;
    int i;

    L = ReadInput();
    scanf("%d %d", &minD, &maxD);
    L = Delete( L, minD, maxD );
    PrintList( L );

    return 0;
}

/* 你的代码将被嵌在这里 */

输入样例:

10
4 -8 2 12 1 5 9 3 3 10
0 4

输出样例:

4 -8 12 5 9 10 

6.2参考代码

List Delete( List L, ElementType minD, ElementType maxD ) {
    Position i, j;
    for (i = 0, j = 0; i <= L->Last; i++) {
        if (L->Data[i] <= minD || L->Data[i] >= maxD) {
            L->Data[j++] = L->Data[i];
        }
    }
    L->Last = j - 1; // 更新线性表的长度
    return L;
}




6-3 单链表逆转

本题要求实现一个函数,将给定的单链表逆转。

函数接口定义:

List Reverse( List L );

其中List结构定义如下:

typedef struct Node *PtrToNode;
struct Node {
    ElementType Data; /* 存储结点数据 */
    PtrToNode   Next; /* 指向下一个结点的指针 */
};
typedef PtrToNode List; /* 定义单链表类型 */

L是给定单链表,函数Reverse要返回被逆转后的链表。

裁判测试程序样例:

#include <stdio.h>
#include <stdlib.h>

typedef int ElementType;
typedef struct Node *PtrToNode;
struct Node {
    ElementType Data;
    PtrToNode   Next;
};
typedef PtrToNode List;

List Read(); /* 细节在此不表 */
void Print( List L ); /* 细节在此不表 */

List Reverse( List L );

int main()
{
    List L1, L2;
    L1 = Read();
    L2 = Reverse(L1);
    Print(L1);
    Print(L2);
    return 0;
}

/* 你的代码将被嵌在这里 */

输入样例:

5
1 3 4 5 2

输出样例:

1
2 5 4 3 1

6.3参考代码

List Reverse( List L ) {
    PtrToNode prev = NULL;     // 前一个节点
    PtrToNode current = L;     // 当前节点
    PtrToNode next;            // 下一个节点

    while (current != NULL) {
        next = current->Next;  // 保存下一个节点
        current->Next = prev;  // 反转链表的指向
        prev = current;        // prev移动到下一个节点
        current = next;        // current移动到下一个节点
    }
    L = prev;                  // 最后prev变为新链表的头节点
    return L;
}